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Abstract The possibilities for reducing the necessary

computation power in wavelet-based electronic structure

calculations are studied. The expansion of the expectation

values of energy operators, the integrals of basis functions

are mostly system-independent, consequently it is not nec-

essary to compute them in each calculations. Fixed building

blocks, such as a parameterized expansion of the nuclear and

electron–electron cusp can reduce the amount of necessary

calculation. An algorithm for local expansion refinement is

also given. It is possible to determine the significant expan-

sion coefficients of a high resolution level without solving

the Schrödinger equation using only lower resolution results.
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1 Introduction

Although wavelet analysis is not an old tool in mathe-

matics, its practical importance is already proven, e.g., by

the image and motion picture compressing algorithms

based on wavelets [1–4]. Since this particular approach

can be rather flexibly applied to solving problems, multi-

resolution analysis (MRA) or wavelet analysis is widely

used in various fields of science, also in molecular and

solid state physics. Simple quantum mechanical test sys-

tems were studied using finite level MRA approximations

[5, 6], local density approximation calculations were

carried out using wavelet basis sets [7], and even more

sophisticated methods, like the evaluation of Kohn–Sham

equations were modified to wavelet basis [8, 9]. Most of

the methods are tested in one dimension, however,

benchmark calculations for the quasi 2D homogeneous

electron gas using wavelets demonstrated the computa-

tional feasibility of the approach [10]. A multiresolution

algorithm in three dimensions has been suggested for

calculating the Hartree–Fock exchange operator and for a

solution of the local density approximation of the Kohn–

Sham equation [11, 12]. Interesting mathematical exten-

sions of treating the one-particle Schrödinger equation in

curvilinear coordinates with wavelets have been pub-

lished, as well [13, 14].

In MRA applications the rapid changes, which need

high resolution for sufficiently precise description, are

localized to certain intervals of the studied function.

Wavelet analysis is able to change the resolution locally

and this property is useful also in quantum mechanics.

Quick changes of the wave functions and density matrices

are usually concentrated to specific regions, like the sur-

rounding of an atomic core. The distant fields of a mole-

cule can be described at a rather rough resolution level

with a grid distance of 0.5–0.25 atomic units and the

extension of regions where further refinement is necessary

near nuclear cusps shrinks exponentially as the resolution

increases [15].
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In the following review-like contribution, we summarize

several aspects of our previous developments on the

wavelet expansion possibilities of density matrices and

related quantities, like expectation values of energy oper-

ators. Besides a general overview, the emphasis is put on

the resolution of a serious problem encountered during the

practical applications. Namely, the price to be paid for an

overall better description is extremely high, as the number

of basis functions increases exponentially with increasing

resolution level. Consequently, an especially careful

selection process of the extension of the basis set is of

paramount importance. Critical areas in this respect are the

surroundings of nuclear and electron cusps. A possibility to

include the Kato electron–electron cusp condition [16] in

the calculations is discussed. An illustration of the MRA

description of nuclear and electron–electron cusps is pre-

sented for the three dimensional He atom. A method for an

a priori determination of the highly detailed regions of

wave functions based on the already calculated lower reso-

lution level expansion coefficients is also given, and

compared with other methods. This adaptive refinement

algorithm is tested by numerical comparisons to analytical

solutions of one dimensional systems.

2 Wavelets and scaling functions: the concept of MRA

Multiresolution analysis of the square integrable functions’

Hilbert space L2ðRÞ is a sequence of its closed subspaces

fVm; m 2 Zgwhich are embedded into each other. The basis

functions of Vm (the scaling functions) are shifted versions of

a given function sm0 on an equidistant grid. As the resolution

level m increases, both the scaling functions and the grid

distance b are compressed by a given factor a. Thus the

(orthonormal) basis of subspace Vm is the set of functions

fsm‘ðxÞj‘ 2 Zg, where sm‘(x) = am/2s0(amx - b‘). The val-

ues a = 2 and b = 1 are commonly used and the function

s0(x) is usually referred as the mother scaling function.

The basis functions of a resolution level m can be

expanded by the scaling functions of the finer level m ? 1,

using the refinement equation

sm‘ðxÞ ¼
XNs

k¼0

pksmþ1kþ2‘ðxÞ; ð1Þ

with
PNs

k¼0 pk ¼ 2. If only a finite number Ns of non-zero

expansion coefficients pk are chosen, the mother scaling

function s0 has finite support, namely, s0 is zero outside of

the interval [0, Ns) [17, 18].

An mth level approximation of the function f 2 L2ðRÞ
arises as

Pmf ðxÞ ¼ f ½m�ðxÞ ¼
X

‘

cm‘sm‘ðxÞ; ð2Þ

with cm‘ = hsm‘|fi. Here, Pm is the projector to the subspace

Vm.

Let the detail space Wm be the orthogonal complement

of Vm in the finer subspace Vm?1

Vmþ1 ¼ Vm �Wm: ð3Þ

In Wm a basis set can be defined as wm‘(x) = 2m/2w0(2m

x - ‘) generated from the mother wavelet w0 by dilations

and shifting, similarly to the scaling functions. The

elements of the basis set fwm‘ðxÞj‘ 2 Z;m ¼ 0; 1; . . .g,
i.e., the wavelets, are also compactly supported, if the

scaling functions are of that kind. They can be expanded as

wm‘ðxÞ ¼
X1

k¼1�Ns

qksmþ12‘�kðxÞ ð4Þ

with qk = (-1)k p*-k?1.

Starting with resolution level m0, an Mth level expansion

(M [ m0), is a projection to the subspace

VM ¼ a
M�1

m¼m0

Wm � Vm0
: ð5Þ

The approximation PMf can be equivalently expanded as

f ½M�ðxÞ ¼
X

k

cMksMkðxÞ ð6Þ

f ½M�ðxÞ ¼
X

k

cm0ksm0kðxÞ þ
XM�1

m¼m0

X

k

dmkwmkðxÞ: ð7Þ

Supposing that the function f is enclosed in a box by

restricting the summations for a finite set of k, the number

of coefficients {cMk} in expansion (6) equals to the total

number of coefficients fcm0k; dmkg {cm0k, dmk} in (7),

independent of the starting level m0, and scales as *2DM in

D dimensions. However, it is not necessary to keep all the

expansion coefficients dmk, if in a region a lower resolution

level is sufficient. Using wavelets and ignoring the suffi-

ciently small coefficients of type dmk can lead to a man-

ageable number of necessary basis functions even in case

of molecules, as we have shown in [15].

3 Calculating the integrals of scaling functions

In overlap and kinetic energy matrix element calculations

integration of products of scaling functions and its deri-

vatives satisfying the refinement equation

ujðxÞ ¼ 21=2
X

‘2Z
�p
ðjÞ
‘ ujð2x� ‘Þ ð8Þ

is necessary. Consecutive applications of the integral

variable transformation x? 2-mx and substitutions of the

refinement equation (8) lead to the calculation of the

symbols
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Hða1; . . .; anÞ ¼
Z

u0ðxÞ
Yn

j¼1

ujðx� ajÞdx: ð9Þ

The values of H(a1, …, an) can be calculated by solving

the eigenvalue equation

Hða1; . . .; anÞ ¼
X

l1;...;ln2Z
h2a1�l1;...;2an�ln

Hðl1; . . .; lnÞ

ð10Þ

with hl~ arising from the coefficients in the refinement

equations

hl~ ¼ hl1;...;ln
¼
X

c2Z
pð0Þc

Yn

j¼1

pðjÞc�lj
: ð11Þ

A more detailed discussion of the above procedure can

be found in [19]. An efficient algorithm for calculating more

specific integrals appearing in DFT calculations is applied

in the ABINIT software package and published in [20].

4 MRA expansion of density matrices

For spin variables, we have introduced scaling function

spinors as the one-electron basis set [22] according to

smðxÞ ¼ sm‘sðr; rÞ ¼ sm‘ðrÞdsr ð12Þ

with m = (m, ‘, s). Later, Flad et al. [21] have also

analyzed the structure of wavelet representations of

correlated wave functions. In the following considerations

expansion (6) is applied for the mth order approximation

of the wave function. The N-electron basis functions are

built as

vlðx1; . . .; xNÞ ¼ ðN!Þ�1=2

sm1
ðx1Þ . . . sm1

ðxNÞ
..
. . .

. ..
.

smN
ðx1Þ . . . smN

ðxNÞ

�������

�������
;

ð13Þ

where multiindex l denotes the set of indices l ¼
ðm1; . . .;mNÞ: A general N-particle wave function W can

be written as

Wðx1; . . .; xNÞ ¼
X

l

clvlðx1; . . .; xNÞ ð14Þ

with complex coefficients cl = al ? ibl, where al and bl

are real. Using the scaling function decomposition (14), the

pure state N-particle density matrix

cNðx1; . . .; xN jx01; . . .; x0NÞ ¼ Wðx1; . . .; xNÞW�ðx01; . . .; x0NÞ
ð15Þ

leads after partial trace operations to the spin-traced two-

particle density matrix of the form

cs½m�
2 ðr1; r2jr01; r02Þ ¼

X

k1;k2
‘1 ;‘2

gA;m
k1k2‘1‘2

#A;m
k1k2‘1‘2

ðr1; r2jr01; r02Þ
h

þgB;m
k1k2‘1‘2

#B;m
k1k2‘1‘2

ðr1; r2jr01; r02Þ
i

ð16Þ

where coefficients gA;B;m
k1k2‘1‘2

are real numbers. The functions

#A;m
k1k2‘1‘2

ðr1; r2jr01; r02Þ ¼
1

2
smk1
ðr1Þsmk2

ðr2Þs�m‘1
ðr01Þs�m‘2

ðr02Þ
h

þsmk2
ðr1Þsmk1

ðr2Þs�m‘2
ðr01Þs�m‘1

ðr02Þ
þsm‘1

ðr1Þsm‘2
ðr2Þs�mk1

ðr01Þs�mk2
ðr02Þ

þsm‘2
ðr1Þsm‘1

ðr2Þs�mk2
ðr01Þs�mk1

ðr02Þ
i

ð17Þ

and

#B;m
k1k2‘1‘2

ðr1; r2jr01; r02Þ ¼
i

2
smk1
ðr1Þsmk2

ðr2Þs�m‘1
ðr01Þs�m‘2

ðr02Þ
h

þsmk2
ðr1Þsmk1

ðr2Þs�m‘2
ðr01Þs�m‘1

ðr02Þ
�sm‘1

ðr1Þsm‘2
ðr2Þs�mk1

ðr01Þs�mk2
ðr02Þ

�sm‘2
ðr1Þsm‘1

ðr2Þs�mk2
ðr01Þs�mk1

ðr02Þ
i

ð18Þ

are suitable to expand any density matrix c2
s . Functions

0A,B,m meet all the necessary symmetry properties of c2
s

[22], and the expansion coefficients have the following

symmetries

gA;m
k1k2‘1‘2

¼ gA;m
k2k1‘2‘1

¼ gA;m
‘1‘2k1k2

;

gB;m
k1k2‘1‘2

¼ gB;m
k2k1‘2‘1

¼ �gB;m
‘1‘2k1k2

:
ð19Þ

This representation offers a natural and easy way to

reproduce the required electron–electron cusp condition

[16, 23] for the two-particle density matrix. In one

dimension, for near index pairs ‘1, ‘2 and k1, k2 the

expansion coefficients should satisfy [24]

gA;B;m
‘1‘2k1k2

� 1þ 1
2
ðj‘1 � ‘2j þ jk1 � k2jÞ � 2�m

� �
gA;B;m

LLKK : ð20Þ

Here, L = b(‘1 ? ‘2 ? 1)/2c and K = b(k1 ? k2 ? 1)/

2c, with bxc meaning the floor of x.

Tracing one of the space variables, the one-particle spin-

traced density matrix can be written as

cs½m�
1 ðrjr0Þ ¼

X

k;‘

gA;m
k‘ #

A;m
k‘ ðrjr0Þ þ gB;m

k‘ #
B;m
k‘ ðrjr0Þ

h i
; ð21Þ

where the expanding functions are

#A;m
k‘ ðrjr0Þ ¼

1

2
smkðrÞs�m‘ðr0Þ þ sm‘ðrÞs�mkðr0Þ
� �

; ð22Þ

and

#B;m
k‘ ðrjr0Þ ¼

i

2
smkðrÞs�m‘ðr0Þ � sm‘ðrÞs�mkðr0Þ
� �

: ð23Þ
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Their symmetry properties are similar to those of the

two-electron density matrix basis functions.

The mth level approximation of the electron density

arises by taking the diagonal element of (21)

.½m�ðrÞ ¼
X

k;‘

gA;m
k‘ #

A;m
k‘ ðrjrÞ þ gB;m

k‘ #
B;m
k‘ ðrjrÞ

� �
: ð24Þ

In the case, if the scaling functions are real, which is

rather common, 0k ‘
B,m(r| r) = 0, which leads to

.½m�ðrÞ ¼
X

k‘

gA;m
k‘ smkðrÞsm‘ðrÞ: ð25Þ

It is important to notice, that if the supports of the

scaling functions do not overlap, i.e., the product smk(r)

sm‘(r) will be zero, the coefficient gk ‘
A,m does not count in the

expansion of the density, nor to that of the kinetic or

external potential energy functionals, thus it can be chosen

arbitrarily.

It should also be noted, that the products smk (r) sm‘(r)

do not constitute a basis of the density in the following

sense. It may be possible, that more mth level expansions,

with different sets of coefficients gk ‘
A,m exist for one given

density, i.e. expansion (25) is not unique.

Based on some general physical properties we have

suggested a Weizsäcker-type expression

gA;m
k‘ ¼ 2�m=2 ffiffiffi

.
p

2�mðk þ gÞð Þ ffiffiffi.p 2�mð‘þ gÞð Þ ð26Þ

as a first approximation of the expansion coefficients [25].

We have also shown that taking into account the proper

antisymmetry property of the wave function leads to a

further refinement of the scaling function coefficients (26),

moreover, inclusion of electron correlation effects is also

possible in a natural way.

5 Expansion of energy terms

Using the density, the spin-traced one- and two-electron

density matrices, the kinetic energy T, electron–electron

interaction, and external potential energy expectation val-

ues can be expressed as

hT̂i ¼ 1

2

Z
d

dr

d

dr0
cs

1ðrjr0Þ
	 
�����

r¼r0

dr ð27Þ

hŴi ¼
Z

cs
2ðr1; r2jr1; r2Þ
jr1 � r2j

dr1dr2 ð28Þ

hV̂i ¼
Z

.ðrÞvðrÞdr; ð29Þ

where v(r), the external potential is usually a sum of terms

in the form Za|r - Ra|-1, where Ra indicates the site of the

ath nucleus with charge Za. With expansion (24), (21) and

(16) of the density and the density matrices the kinetic (27),

the electron–electron interaction (28) and the external

potential energy (29) can be written in one dimension by

lengthy but straightforward algebraic calculations,

applying the dilation and translation properties of the

scaling functions as

hT̂i½m� ¼ 1

2

X

k‘

gA;m
k‘ T mðk � ‘Þ ð30Þ

hŴi½m� ¼
X

k1k2‘1‘2

gA;m
k1k2‘1‘2

�Wmðk1�‘1;k2�‘2;k1�k2Þ ð31Þ

hV̂i½m� ¼
X

a

Za

X

k‘

gA;m
k‘ �Vmð2�mk�Ra;2

�m‘�RaÞ ð32Þ

with the expansion coefficients gk ‘
A,m and gA;m

k1k2‘1‘2
of the one

and two-electron density matrix. Ra are expressed in units

of the grid distance b.

Using the refinement equation (8), the functions cov-

ered by the calygraphical letters can be originated from

integrals

T 0ðkÞ ¼
Z

s000ðxÞs
0�
0kðxÞdx; ð33Þ

W0ðk; ‘; jÞ ¼
Z

s00ðx1Þs00ðx2Þs�0kðx2Þs�0‘ðx1Þ
jx1 � x2 � jj dx1dx2; ð34Þ

V0ðqk; q‘Þ ¼
Z

s00ðx� qkÞs�00ðx� q‘Þ
jxj dx; ð35Þ

where s0(x) = ds(x)/dx. For higher resolution levels m, the

values can be derived from (33)–(35) by a simple scaling

transformation as T m ¼ 2mT 0; Wm ¼ 22mW0 and

Vm ¼ 2mV0, respectively.

According to these results energy functionals can be

expanded by three types of universal functions. Due to the

compact support of scaling functions the overlap in

expressions (33)–(35) is zero for most values of the

arguments. Function T is defined for one integer variable,

making it especially simple to manage, as it represents a

series of few numbers for the arguments |k| \ Ns. Simi-

larly, W is to be calculated on an integer grid of three

variables with the constraint |k|, |‘| \ Ns. The numerical

storage of its values is much easier than the similar

problem of storing two-electron integrals in usual

numerical approaches. Moreover, since they do not

depend on the actual system properties, only on the type

of wavelets, the values of T and W can be calculated and

stored in advance. The universal function V is significant

for the real values |q1 - q2| \ Ns and zero outside of this

range.

According to the above considerations the compact

support of the basis functions and the functional forms of

the matrix elements (33)–(35) indicate that only the

immediate neighborhood of the basis functions contribute
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to the Hamiltonian matrix elements, causing that the

sparse matrix H contains O(N) number of non-zero ele-

ments. There are known methods for O(N) diagonaliza-

tion of sparse matrices. Moreover, in the next section we

will show, that it is possible to replace the fine resolution

parts (nuclear cusps) of the wave function by pre-deter-

mined fixed building blocks. All these advantageous

properties offer the possibility of a calculation method of

O(N).

6 MRA representations of the nuclear

and electron–electron cusps in the He atom

One of the most favorable properties of MRA expansions is

the relatively easy handling of sharp peaks and changes in

the represented distributions. Since Kato’s original work

[16], it is well known, that the wave function as well as the

density and the two-particle density operator [23] are

continuous at the singular points of the Hamiltonian

operator, however their derivatives show discontinuity.

These questions have recently been studied [26] in relation

with the complexity of the wave function.

With the following study we illustrate that realistic

electronic systems are adequately described by wavelet

expansions at moderately fine resolution levels with a

manageable number of basis function, despite of the sin-

gularities appearing due to the Coulomb interactions. The

simplest system which shows both the nuclear and the

electron-electron cusp is the helium atom described by a

correlated wave function. We will use it as a reference, as

many previous studies (see e.g., [27–30]) provide a precise

description of the wave function. Moreover, it offers the

possibility to test the three dimensional behavior of the

MRA expansion and the necessary level of resolution

around the cusps.

For two electrons in a singlet state the antisymmetric

wave function is a product of the symmetric spatial part

W(r1, r2) and the antisymmetric spin function. As the two-

particle density operator carries essentially the same

information as the wave function for two electrons, we will

study W(r1, r2) instead of c2
s in the following consider-

ations. The z axis of the system of reference is chosen

along the vector r1 and the xz plane is determined by the

plane of the r1 and r2 vectors. With this choice, the com-

ponent form of the electron coordinates is r1 = (0, 0, z1)

and r2 = (x2, 0, z2).

The 3D scaling function representation of the wave

function at resolution level m is given by the expression

W½m�ðr1; r2Þ ¼
X

i1j1k1

X

i2j2k2

cm
i1j1k1;i2j2k2

smi1ðx1Þsmj1
ðy1Þsmk1

ðz1Þ

� smi2ðx2Þsmj2
ðy2Þsmk2

ðz2Þ: ð36Þ

For simplicity, we have given a non-symmetric repre-

sentation, instead of the form similar to (16). In the chosen

system of reference

W½m�ð0; 0; z1; x2; 0; z2Þ ¼
X

k1i2k2

dm
k1i2k2

smk1
ðz1Þsmi2ðx2Þsmk2

ðz2Þ;

ð37Þ

where

dm
k1i2k2

¼
X

i1j1j2

cm
i1j1k1;i2j2k2

smi1ð0Þsmj1
ð0Þsmj2ð0Þ: ð38Þ

In Fig. 1, we present the m = 3 level expansion of the

wave function (37) for x2 = 0 using Daubechies basis set

with Ns = 4. The reference wave function is taken from

reference [31]. The nuclear cusp is clearly identified at the

positions z1 = z2 = 0 (both electrons are at the nucleus),

and the expected closely exponential form is also well

reproduced. We can realize, that the plot shows a rather

smooth surface even at relatively low resolution level,

except the immediate neighborhood of the cusp positions,

where the internal structure of the scaling functions can be

observed. The edges along the lines z1 = 0 or z2 = 0

correspond to those nuclear cusps, when only one of the

electron positions coincides with the nucleus.

The electron-electron cusp is expected where the two

electrons are at the same position, i.e., z1 = z2. By a careful

investigation of the figure, we can realize a slight valley in

the front side of the peak along the diagonal line z1 = z2. In

order to better visualize the effect, we have plotted an

orthogonal cross-section of the surface in Fig. 2. Although

with a moderate oscillation, the MRA expansion suffi-

ciently reproduces the electron-electron cusp describing the

electron correlation.

Finally, we have studied the extension of the spatial

regions where at a given resolution level m the

Fig. 1 Level m = 3 scaling function expansion of the He wave

function W(r1, r2) in arbitrary units (W is not normalized). For the

coordinates z1 and z2 atomic units were used
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approximation W[m] is not satisfactory. In order to quanti-

tatively characterize the size of the above domain, let us

consider that the scaling function expansion (36) naturally

divides the configuration space to non-overlapping multi-

dimensional cubic cells of edge length 2-m. The Kth such

cell will be denoted by D½m�K : Normalizing the wave func-

tion by its global maximum value, we count the number of

cells where the deviation of the wave functions exceeds a

critical value d

Nðd;mÞ ¼ number of K indices where max
ðr1;r2Þ2D½m�K

jWðr1; r2Þ

�W½m�ðr1; r2Þj[ d: ð39Þ

In Fig. 3, we have plotted N(d, m) as a function of the

precision requirement d and the resolution level m. We can

conclude, that at high precision approximations (d is small)

the number of cells where a further refinement of the wave

function is necessary increases almost exponentially. At

intermediate precision requirements N(d, m) saturates for a

moderate m, whereas for larger d we can realize, that the

higher resolution levels become quickly unimportant. As a

general rule, we expect that at a given precision level the

number of regions for further refinement initially increases

exponentially, and after attaining a maximum it drops to

zero. The initial exponential growth at rough resolutions

can be explained by the fact, that the precision constraint

demands a full space refinement. On the other hand, as we

have shown [22], both the extremely rough and the very fine

resolution level wavelet contributions should necessarily

disappear, causing N(d, m)? 0 if m??. Fig. 3 shows, that

depending on the precision requirement N(d, m) = 0 for

relatively small m already.

Considering that the linear cell size decreases as *2-m,

the total spatial extension of insufficient approximations

decreases monotonically with the resolution level.

These facts involve that a deliberate omission of fine

details in solving the Schrödinger equation leads to appro-

priate physical results. Moreover, it is clear from the above

considerations, that the really fine resolution structure of the

molecules is originated solely from the cusps, which, on the

other side, show a universal structure due to Kato’s theo-

rem. As a future prospect and a further simplification of the

calculations we suggest that the universal fine structure of

the molecules (cusps) is replaced by predefined building

blocks (high resolution level wavelet expansion parts) and

the numerical solution of the eigenvalue problem is per-

formed only up to the medium resolution parts.

7 Avoiding the unfavorable algorithmic complexity

in terms of the refinement level

Any element of the Hilbert space W 2 L2ðRÞ can be

exactly decomposed into orthogonal components by multi-

resolution analysis as

WðxÞ ¼
X

‘2Z
c‘ s0‘ðxÞ þ

X1

m¼0

X

‘2Z
dm‘ wm‘ðxÞ: ð40Þ

If W(x) is a compactly supported or a fast decaying

function, one can realize, that the total number of expansion

coefficients in a given resolution level m scales as *2m (or

Fig. 2 Cross-section of the surface W(0, 0, z1; 0, 0, z2) in a perpen-

dicular direction to the diagonal z1 = z2. The electron-electron cusp

manifests itself as a V-shaped folding in the curve. The left and right

peaks are nuclear cusps at z1 = -1.258, z2 = 0 and z1 = 0, z2 =

-1.258, respectively. Both the numerical wave function W of Ref.

[31] and its m = 3 level scaling function expansion W[3] are shown in

arbitrary units. For the difference coordinate z1 - z2 atomic units

were used

Fig. 3 The number of configuration space cells N(d, m) where

further refinement is necessary in the (0, 0, z1; 0, 0, z2) plane of the

He wave function’s mth level expansion as a function of the

refinement level m and the error criterion d on a logarithmic scale. If

refinement is not necessary (i.e., N(d, m) = 0), no point is plotted
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in D dimensions *2mD), which makes the above expansion

unapplicable for practical calculations. The exponential

increase of the number of necessary basis functions can be

avoided by an adaptive refinement strategy, including

wavelets only in those regions of the molecules, where

the details of the electron structure require it. This idea is

explained in the following.

The resolution structure of the wave function can be

characterized by the series of projections

P0W ¼
X

‘2Z
c‘ s0‘;

Q0W ¼
X

‘2Z
d0‘ w0‘;

Q1W ¼
X

‘2Z
d1‘ w1‘;

. . .

ð41Þ

P0, Q0, Q1, etc. are the orthogonal projection operators to

subspaces V0, W0 W1, etc. The wave function W projected

to subspace VM is

W½M� ¼ P0Wþ
XM�1

m¼0

QmW: ð42Þ

For characterizing the importance of a given resolution

level Wm, a measure for the level complexity can be

introduced as Xm ¼ kQmWk2
. The detail spaces Wm with

negligible Xm can be completely ignored.

Often, even if

Xm ¼ kQmWk2 ¼
X

‘2Z
d2

m‘ ð43Þ

is rather large, the significant part of the sum arises from a

very restricted space domain [15, 32]. Using the restricted

detail space eWm ¼ spanfwm‘j where dm‘ is significantg can

help to keep the computation demands lower, provided a

method for guessing the magnitude of the coefficients dm‘

before having them already calculated can be given. A

predictive method is needed using only the results of the

already calculated (m - 1)th, (m - 2)th, etc. levels. The

in-level truncation of the Hilbert space is symbolized here

by a tilde mark above the quantity’s sign, i.e.,

~W½M� ¼ P0Wþ
XM�1

m¼0

~QmW; ð44Þ

with ~Qm being the projector to the in-level truncated sub-

space eWm:

According to case studies of exactly solvable model

systems [33], high resolution wavelets with exponentially

small Xm are negligible. At lower m values only a frac-

tional part of them have essential contribution in the

expansion, mostly localized to quickly changing parts of

the exact wave functions caused by the singularities of the

external potential. It has turned out [34], that high neces-

sary expansion levels are also induced by the careless

treatment of the kinetic energy operator. A further study of

similar questions can be found in [35]. In the following

discussion we will concentrate on avoiding high required

resolution caused both by the kinetic energy operator and

by singular regions of the external potential.

Clearly, a method is necessary for giving the essential

coefficients in (40), prior to calculating the complete reso-

lution level. Let us suppose, that the Mth level approxi-

mation of the wave function W

eW½M�ðxÞ ¼
X

‘2eV0

~c
½M�
‘ s0‘ðxÞ þ

XM�1

m¼0

X

‘2 eWm

~d
½M�
m‘ wm‘ðxÞ: ð45Þ

is known. The shorthand notation ‘ 2 eWm, indicates, that

the summation index ‘ is restricted to the wavelets wm‘

belonging to the in-level truncated subspace eWm: Based on

this knowledge, the (M ? 1)th level coefficients can be

predicted in the following way.

Tymczak and Wang [36] suggested a ‘‘bootstrap’’

algorithm for selecting the most important (M ? 1)th level

coefficients, based on the approximate scaling behavior of

~d
½M�
m‘ : This mathematical argument implies that at the

extension step of the Hilbert space to eH½Mþ1� ¼ eH½M� �
eWM the subspace eWM should contain only those wavelets

wM‘ which belong to those spatial domains that have been

considered important in the previous Mth resolution level.

The number of extension wavelets wM‘ introduced by the

bootstrap algorithm is, however, much larger than it is

necessary for the appropriate description of the wave

function, as we have found it in [15] and pointed out also at

the end of the previous Section.

Although the unnecessary wavelets are singled out later,

after solving the Schrödinger equation in eH½Mþ1� and

dropping the small coefficients ~d
½Mþ1�
M‘ ; this approach is

clearly not optimal. An essential improvement can be

achieved by an a priori selection of the really important

coefficients based on a physical selection criterion. This

procedure is based on the ideas published in [32] and [37].

The quality of the Mth level approximation of the

eigenvalues and eigenvectors can be characterized by the

error function

eD½M� ¼ ðH � eE ½M�Þ eW½M� 6¼ 0: ð46Þ

As eW½M� is the solution of the Schrödinger equation in

the restricted Hilbert space eH½M�, the error function (46) is

orthogonal to it, i.e. hwm‘jðH � eE ½M�Þj eW½M�i ¼ 0 if wm‘ 2
eH½M�: On the other hand, one expects that the wavelet

extensions are essential in those spatial domains where the

error function is large. The contribution of the wavelet

wM‘ [ WM to eD½M� is measured by
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rM‘ ¼ hwM‘jeD½M�i
���

���
2

¼ hwM‘jH � eE ½M�j eW½M�i
���

���
2

: ð47Þ

If rM‘ is large enough, the wavelet wM‘ should be

included in the further calculations, if not, it can be omitted.

Combining the bootstrap algorithm with the physical

selection criterion (47) determines the in-level truncated

extension detail space eWM: In fact, we have sorted the rM‘

to descending order and we have dropped all wavelets with

the smallest rM‘, until the cumulated value
P

‘ rM‘ did not

exceed a preselected precision criterion g. The Schrödinger

equation is solved with this in the truncated Hilbert space

eH½Mþ1� ¼ eH½M� � eWM: This method is adaptive in the

sense, that due to the physical measure (47) the selection is

adapted both to the nature of the described system through

the external potential in H and to the numerical inaccura-

cies in the wavelet representation of the kinetic energy

operator.

The gain by this adaptive method concerning the num-

ber of necessary wavelets compared to wavelet-based cal-

culations with no further considerations is rather large. The

improvement relative to the simple bootstrap algorithm is

also considerable, as controlling the criterion (47) scales

linearly with the number of tested wavelets, whereas the

solution of the eigenvalue problem in this larger subspace

involved in the bootstrap procedure has a much unfavor-

able algorithmic behavior.

As an example, we consider the simple harmonic

oscillator, which is a good model for vibrations of strong

bonds, e.g., the C–F stretching mode. In the ground state

calculation the ordinary solution includes dim W6 ¼ 646

basis functions, whereas for the adaptive one dim eW6 ¼
296; both using the error condition g = 10-9. Adaptive

calculations have been carried out for harmonic oscillators

and the resulting projected wave functions are compared in

Tables 1 and 2. The difference of the norms of the mth

resolution expansion coefficients of W[M] of the level

truncated method and those of the in-level truncated

method eW½M� is shown in the tables for moderate and strict

error requirements. The wave function eW½M� calculated in

the in-level truncated Hilbert space is expected to signifi-

cantly deviate from the eigenstate W[M] received without

truncation if the required precision is low. On the other

hand, for high precision (small g) eW½M� approximates W[M]

very well.

Tables 1 and 2 contain the deviations dkP0
eW½M�0 k

2 ¼
kP0

eW½M�0 k
2 � kP0W

½M�
0 k

2
and dkQm

eW½M�0 k
2 ¼ kQm

eW½M�0 k
2�

kQmW½M�0 k
2

for precisions g = 10-4 and g = 10-8,

respectively. In the intermediate precision case the error of

the wave function saturates with increasing resolution level

M. As a consequence, an excessive refinement of the wave

function is ineffective. In the high precision case the wave

function eW½M�, obtained using the adaptive fine structure

localization method, results in an excellent approximation

to W[M]. The error introduced by the in-level truncation is

less, than that of the level-truncation, up to the resolution

level M = 4. At level M = 5 the in-level truncation error is

below the computer’s arithmetic precision.

Similarly to the wave function the energy saturates with

increasing resolution at low precisions [33]. These facts

Table 1 The deviation of the in-level truncated wave function eW½M�0 from that of W½M�0 due to fine structure localization with g = 10-4 in the

detail spaces V0, W0, ..., W4

M dkP0
eW½M�0 k

2 dkQ0
eW½M�0 k

2 dkQ1
eW½M�0 k

2 dkQ2
eW½M�0 k

2 dkQ3
eW½M�0 k

2 dkQ4
eW½M�0 k

2

1 0.00359 9 10-7 -0.00359 9 10-7

2 -0.57935 9 10-7 0.57900 9 10-7 0.00341 9 10-8

3 -1.33904 9 10-7 1.15127 9 10-7 1.87090 9 10-8 0.6884 9 10-10

4 -1.11325 9 10-7 1.01237 9 10-7 1.19756 9 10-8 0.3925 9 10-10 0.429 9 10-11

5 -1.11955 9 10-7 0.99627 9 10-7 1.26402 9 10-8 -2.9725 9 10-10 1.460 9 10-11 8 9 10-14

Table 2 The deviation of the in-level truncated wave function eW½M�0 from that of W½M�0 due to fine structure localization with g = 10-8 in the

detail spaces V0, W0, …, W3

M dkP0
eW½M�0 k

2 dkQ0
eW½M�0 k

2 dkQ1
eW½M�0 k

2 dkQ2
eW½M�0 k

2 dkQ3
eW½M�0 k

2

1 0.205 9 10-11 -0.205 9 10-11

2 0.023 9 10-11 -0.023 9 10-11

3 -5.933 9 10-11 5.902 9 10-11 3.2 9 10-13

4 -5.408 9 10-11 5.457 9 10-11 -5.1 9 10-13 2 9 10-14

5 -3.550 9 10-11 3.530 9 10-11 1.8 9 10-13 3 9 10-14 -10-14

The error in the detail spaces W4, W5,… is less than the numerical precision of the computer arithmetics
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emphasize the importance of choosing matching values for

the precision requirement g and the granularity level M.

8 Conclusions

We have outlined how it is possible to formulate the

quantum mechanical eigenstate problem, as well as the

representation of the wave function, density matrices in

terms of the wavelet or multiresolution analysis. The main

idea is an initially rough description of the system,

including only details in large scale. Consecutively adding

finer resolution details is possible by adding wavelets to the

orthonormal basis set, which describe short range changes

in the wave function. It turned out, that the contribution

of such fine details exponentially disappears as the level of

resolution M increases. This fact offers the possibility of

truncating the applied basis set to a sometimes surprisingly

rough description level, at the same time approximating the

wave function with a sufficient precision.

We have found the same experience by describing the

nuclear and electron-electron cusp properties of the corre-

lated spatial wave function W(r1, r2) of the He atom in

three dimensions. Already the M = 3 level expansion leads

to a quite acceptable reproduction of the singularities of W
around the nuclear and two-particle cusps.

Still, even for moderate values of M, the number of basis

functions of approximate wavelet expansions increases as

*2DM, making practical numerical calculations impossi-

ble. In this contribution we have suggested an adaptive

method, by which it is possible to exclude a large number

of fine resolution basis functions, based on a prediction of

their negligible contribution to the wave function. Testing

the predictive algorithm on a model system we have found,

that the number of significant basis functions is consider-

ably less than the dimension of the detail subspaces

included in full calculations.

The main benefit from using the highly uniform basis set

of scaling functions and wavelets which are generated by

simple scaling and displacement transformations of mother

functions is the extremely compact structure of the one-

and two-electron integral list. In fact, only a few numbers

have to be calculated and stored in advance, depending

only on the chosen mother function, and are completely

independent of the studied system.
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